Writing MathML in Jekyll

MathML is a powerful tool for representing mathematical expressions in web documents without js library like mathjax or katex, allowing for precise formatting and accessibility.

You can also try this Write your calculations, equations, chemical formulas and get instant results

https://webdemo.myscript.com/views/math/index.html


Examples

x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 n=1+1n2=π26\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6} x=-b±b2-4ac2ax = \frac{-b\pm\sqrt{b^2-4ac}}{2a} f(x)=n=-cne2πi(n/T)x=n=-f^(ξn)e2πiξnxΔξf(x)=\sum_{n=-\infty}^\infty c_n e^{2\pi i(n/T) x} =\sum_{n=-\infty}^\infty \hat{f}(\xi_n) e^{2\pi i\xi_n x}\Delta\xi Γ(t)=limnn!ntt(t+1)(t+n)=1tn=1(1+1n)t1+tn=e-γttn=1(1+tn)-1etn\Gamma(t) = \lim_{n \to \infty} \frac{n! \; n^t}{t \; (t+1)\cdots(t+n)}= \frac{1}{t} \prod_{n=1}^\infty \frac{\left(1+\frac{1}{n}\right)^t}{1+\frac{t}{n}} = \frac{e^{-\gamma t}}{t} \prod_{n=1}^\infty \left(1 + \frac{t}{n}\right)^{-1} e^{\frac{t}{n}} sl(n,𝔽)={An(𝔽):Tr(A)=0}\mathfrak{sl}(n, \mathbb{F}) = \left\{ A \in \mathscr{M}_n(\mathbb{F}) : \operatorname{Tr}(A) = 0 \right\} x2y2x^2 y^2 F32\multiscripts{_2}{F}{_3} x+y2k+1\frac{x+y^2}{k+1} x+y2k+1x+y^{\frac 2 {k+1}} ab/2\frac{a}{b/2} a0+1a1+1a2+1a3+1a4\displaystyle a_0 + \frac{1}{\displaystyle a_1+\frac{1}{\displaystyle a_2+\frac{1}{\displaystyle a_3+\frac{1}{\displaystyle a_4}}}} (nk/2)\binom{n}{k/2} (p2)x2yp-2-11-x11-x2\binom{p}{2} x^2 y^{p-2} - \frac{1}{1-x} \frac{1}{1-x^2} 0im0<j<nP(i,j)\sum_{\substack{ 0 \le i \le m \\ 0 < j < n }} {P(i,j)} x2yx^{2y} i=1pj=1qk=1raijbjkcki\sum_{i=1}^p \sum_{j=1}^q \sum_{k=1}^r {a_{i j} b_{j k} c_{k i}} 1+1+1+1+1+1+1+x\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}}}} (2x2+2y2)|φ(x+iy)|2=0\left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) {| \varphi(x+ i y)|}^2 = 0 222x2^{2^{2^x}} 1xdtt\int_1^x \frac{dt}{t} Ddxdy\iint_D {dx dy} f(x)={1/3if0x1;2/3if3x4;0elsewhere.f(x) = \begin{cases} 1/3 & \text{if} \quad 0 \leq x \leq 1; \\ 2/3 & \text{if} \quad 3 \leq x \leq 4; \\ 0 & \text{elsewhere}. \end{cases} yx2y_{x^2} ((abcd)(efgh)0(ijkl))\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} & \begin{pmatrix} e & f \\ g & h \end{pmatrix} \\ 0 & \begin{pmatrix} i & j \\ k & l \end{pmatrix} \end{pmatrix} det|c0c1c2cnc1c2c3cn+1c2c3c4cn+2cncn+1cn+2c2n|>0\det \begin{vmatrix} c_0 & c_1 & c_2 & \dots & c_n \\ c_1 & c_2 & c_3 & \dots & c_{n+1} \\ c_2 & c_3 & c_4 & \dots & c_{n+2} \\ \vdots & \vdots & \vdots & & \vdots \\ c_n & c_{n+1} & c_{n+2} & \dots & c_{2n} \end{vmatrix} > 0 yx2y_{x_2} x9231415+πx^31415_92 + \pi xybazcdx^{z^d_c}_{y_b^a} y3y_3''' x˙=σ(y-x)y˙=ρx-y-xzz˙=-βz+xy\begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{aligned} x˙=σ(y-x)y˙=ρx-y-xzz˙=-βz+xy\begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{aligned} 𝐕1×𝐕2=|𝐢𝐣𝐤XuYu0XvYv0|\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} P(E)=(nk)pk(1-p)n-kP(E) = {n \choose k} p^k (1-p)^{ n-k} 1(ϕ5-ϕ)e25π=1+e-2π1+e-4π1+e-6π1+e-8π1+\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } 1+q2(1-q)+q6(1-q)(1-q2)+=j=01(1-q5j+2)(1-q5j+3),for|q|<1.1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for} \quad |q| < 1. ×𝐁-1c𝐄t=4πc𝐣𝐄=4πρ×𝐄+1c𝐁t=0𝐁=0\begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}

Binomial Probability Density Function (PDF)

P ( X = x ) = nx px q(n-x) nx

Where:

Drop Your Email

Add Your Note