Type | LATEX markup | Renders as |
---|---|---|
Plain | \begin{matrix} |
\(\begin{matrix} 1 & 2 & 3\\ a & b & c \end{matrix}\) |
Parentheses; round brackets | \begin{pmatrix} |
\(\begin{pmatrix} 1 & 2 & 3\\ a & b & c \end{pmatrix}\) |
Brackets; square brackets | \begin{bmatrix} |
\(\begin{bmatrix} 1 & 2 & 3\\ a & b & c \end{bmatrix}\) |
Braces; curly brackets | \begin{Bmatrix} |
\(\begin{Bmatrix} 1 & 2 & 3\\ a & b & c \end{Bmatrix}\) |
Pipes | \begin{vmatrix} |
\(\begin{vmatrix} 1 & 2 & 3\\ a & b & c \end{vmatrix}\) |
Double pipes | \begin{Vmatrix} |
\(\begin{Vmatrix} 1 & 2 & 3\\ a & b & c \end{Vmatrix}\) |
Matrix with Dots
Sometimes, you might want to include dots in your matrix to indicate a pattern. You can use the \cdots
, \ddots
, and \vdots
commands for this.
\begin{pmatrix}
1 & 2 & \cdots & n \\
2 & 4 & \cdots & 2n \\
\vdots & \vdots & \ddots & \vdots \\
n & 2n & \cdots & n^2 \\
\end{pmatrix}
and
\begin{bmatrix}
x_{11} & x_{12} & x_{13} & \dots & x_{1n} \\
x_{21} & x_{22} & x_{23} & \dots & x_{2n} \\
\dots & \dots & \dots & \dots & \dots \\
x_{d1} & x_{d2} & x_{d3} & \dots & x_{dn}
\end{bmatrix}
=
\begin{bmatrix}
x_{11} & x_{12} & x_{13} & \dots & x_{1n} \\
x_{21} & x_{22} & x_{23} & \dots & x_{2n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{d1} & x_{d2} & x_{d3} & \dots & x_{dn}
\end{bmatrix}
Matrix Multiplication
To represent matrix multiplication, you can use the \times
command or leave a space between matrices.
\begin{pmatrix}
1 & 2 \\
3 & 4 \\
\end{pmatrix}
\times
\begin{pmatrix}
5 & 6 \\
7 & 8 \\
\end{pmatrix}
Matrix Transpose and Inverse
To represent the transpose of a matrix, you can use the ^T
command.
\begin{pmatrix}
1 & 2 \\
3 & 4 \\
\end{pmatrix}^T
\begin{aligned}
\mathbf{A}
&=
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\\
\mathbf{A}^T
&=
\begin{bmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{bmatrix}
\\
\mathbf{A}^{-1}
&=
\begin{bmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{bmatrix}
\end{aligned}